Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

AI technologies for sustainable agriculture

Changing climatic conditions, the shortage of skilled workers, the use of pesticides – a wide range of factors have an impact on the quality and flow of agricultural processes. Researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI are aiming to make this more efficient and sustainable by means of cloud and AI technologies. As part of the “NaLamKI” project, they are working with partners to establish a software-as-a-service platform that collects device and machine data to form a data basis for forecasts and decision-making aids.

The agricultural sector is facing major challenges: German farmers are already feeling the far-reaching effects of climate change and will have to adapt to this to a greater extent in the future. Rising temperatures and changes in precipitation affect all agricultural variables, ranging from crop growth to crop rotations right through to tillage. Decentralized AI in the cloud as well as centralized AI on farms can help make this process of adapting to changing conditions more efficient, accelerate the process across all areas of agriculture and thus make the overall ecosystem more agile and future-proof.

This is where the NaLamKI project comes into play (see the facts-and-figures box for more on this). Activities will focus on building a cloud-based software-as-a-service (SaaS) platform with open interfaces for providers from agriculture and industry, as well as service providers of special-purpose applications for crop farming. By aggregating sensor and machine data collected using satellites and drones, soil sensors, robotics, manual data collection and inventory data, it is possible to create a data pool from which agricultural processes can be more sustainably optimized using advanced AI methods.

AI applications deployed on the platform support farmers in analyzing crop and soil conditions across large areas of land and assist with the reorganization of nutrient and crop protection processes such as irrigation, fertilization and pest control in order to ensure sufficient crop yields both in terms of quality and quantity, to reduce emissions and to preserve biodiversity. The targeted use of crop protection products, for example, increases crop yields, lowers costs, conserves resources and actively protects the environment.

Farmers will interact with AI
“In addition to climate change, a shortage of skilled labor is also impacting the quality and flow of agricultural processes. Therefore, it is often the case that plant conditions can only be checked on a very selective basis. At present, it is not possible to detect and precisely determine soil water conditions or pest infestation, for example, in large agricultural areas,” says Dr. Sebastian Bosse, Head of Interactive & Cognitive Systems Group at Fraunhofer HHI.

Click here to read the full press release.


For more information:
Martina Müller
Fraunhofer Institute for Telecommunications
Heinrich Hertz Institute, HHI
Einsteinufer 37
10587 Berlin, Germany
Phone +49 30 31002-242
Mobile +49 175 26 444 57
Web: hhi.fraunhofer.de

Publication date: